The Impact of Geographic, Ethnic, and Demographic Dynamics on the Perception of Beauty

Peter Niclas Broer, MD, PhD,* Sabrina Juraj, MSc,† Yuen-Jong Liu, MD,** Katie Weichman, MD,*
Neil Tanna, MD, MBA,§ Marc E. Walker, MD, MBA,* Reuben Ng, MA, MSc;∥ John A. Persing, MD¶

Background: Beauty lies in the eyes of the beholder, but influenced by the individual’s geographic, ethnic, and demographic background and characteristics. In plastic surgery, objective measurements are used as a foundation for aesthetic evaluations. This study assumes interdependence between variables such as country of residence, sex, age, occupation, and aesthetic perception.

Methods: Computerized images of a model’s face were generated with the ability to alter nasal characteristics and the projection of the lips and chin. A survey containing these modifiable images was sent to more than 13,000 plastic surgeons and laypeople in 50 different countries, who were able to virtually create a face that they felt to be the aesthetically “ideal” and most pleasing. Demographic information about the interviewees was obtained.

Results: Values of various aesthetic parameters of the nose were described along with their relationship to geography, demography, and occupation of the respondents. Interregional and ethnic comparison revealed that variables of country of residence, ethnicity, occupation (general public vs surgeon), and sex correlate along a 3-way dimension with the ideal projection of the lips and the chin. Significant interaction effects were found between variables of country of residence or ethnicity with occupation and sex of the respondents.

Conclusions: What are considered the “ideal” aesthetics of the face are highly dependent on the individual’s cultural and ethnic background and cannot simply and solely be defined by numeric values and diverse proportions. As confirmed with this study, ethnic, demographic, and occupational factors impact peoples’ perception of beauty significantly.

Key Words: Beauty, facial aesthetics, ethnic and cultural background, demographic impact, academic practice, private practice, interaction effect, international

From the *Department of Plastic, Reconstructive and Burn Surgery, Bogenhausen Teaching Hospital, Technical University Munich, Germany; †United Nations Population Fund, Technical Division, Population and Development Branch, New York, New York; ‡Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; §Department of Plastic and Reconstructive Surgery, NYU Medical School, New York, New York; ¶Division of Chronic Disease Epidemiology, Yale University School of Public Health, New Haven, Connecticut; and ∥Section of Plastic and Reconstructive Surgery, Yale University School of Medicine, New Haven, Connecticut. Received May 22, 2013. Accepted for publication September 17, 2013.

Address correspondence and reprint requests to Dr. Peter Niclas Broer, Institute of Plastic Surgery, Department of Surgery, Yale University School of Medicine, Office of Plastic and Reconstructive Surgery, 330 Boardman Bldg, BB330, New Haven, CT 06520; E-mail: niclasbroer@yahoo.com

No funding was received for this study.

The authors report no conflicts of interest. Copyright © 2014 by Mutaz B. Habal, MD

ISSN: 1049-2275
DOI: 10.1097/SCS.0000000000000406

METHODS

Computerized images of a white woman’s face were generated using digital imaging software. The viewer was asked to alter various elements in the shape and dimension of the face. The modifications imitate structural lip and chin characteristics typically adjusted in aesthetic procedures to remodel a patient’s face. Specifically, the respondents were asked to adjust each photograph by either augmenting or reducing the projection of the lips and the chin (Fig. 1), with every measure on the 6-point scale representing 1 gradient of augmentation or reduction of the specific facial characteristic.

FIGURE 1. Distribution of respondents’ ethnicities.
TABLE 1. Tests of Between-Subjects Effects, Country of Residence, Sex, and Occupation—Ideal Lip Projection

Source	Type III Sum of Squares	df	Mean Square	F	P	Partial η²	Noncentrality Parameter	Observed Power*	
-----------------------------	-------------------------	----	-------------	-----	-------	------------	-------------------------	-----------------	
Corrected model	113.195†	31	3.651	1.778	0.006	0.043	55.103	0.997	
Intercept	27.35	1	27.35	12.314	0	0.011	13.314	0.954	
Sex	0.072	1	0.072	0.035	0.851	0.008	0.035	0.054	
Occupation	12.287	1	12.287	5.981	0.015	0.005	5.981	0.686	
Country	21.063	8	2.633	1.282	0.249	0.008	10.253	0.598	
Sex × occupation	7.914	1	7.914	3.852	0.05	0.003	3.852	0.501	
Sex × country new	9.163	8	1.145	0.558	0.813	0.004	4.461	0.263	
Occupation × country new	10.089	7	1.441	0.702	0.671	0.004	4.911	0.307	
Sex × occupation × country new	27.352	5	5.47	2.663	0.021	0.011	13.315	0.815	
Error	2489.747	1212	2.054						
Total	2644	1244							
Corrected Total	2602.942	1243							

*Computed using α = 0.05.
†R² = 0.043 (adjusted R² = 0.019).

The online questionnaire, containing these photographs, also gathered demographic data about the interviewee, including information on sex, age, country of residence, and ethnic background.

The authors send the online survey (http://plastics.yale.edu/~jong/nose/) to more than 13,000 people, including plastic surgeons and laypeople in more than 50 countries. Plastic surgeons were targeted through national surgery societies with more than 500 listed members, and the general public was randomly contacted via social and professional networks.

Data were collected in North America (Canada, United States), Latin America, and the Caribbean (Argentina, Brazil, Chile, Colombia, Dominican Republic, Ecuador, Panama, Peru, and Venezuela), Western Europe (Austria, Belgium, Croatia, United Kingdom, France, Germany, Greece, Hungary, Italy, Norway, Poland, Portugal, Spain, Sweden, Switzerland, the Netherlands, and the United Kingdom), Oceania (Australia), Eastern Asia (China, Japan, Republic of Korea), Southern Asia (India, Iran, Pakistan), Southeastern Asia (Thailand, Vietnam), Western Asia (Cyprus, Iraq, Israel, Jordan, Kuwait, Lebanon, Turkey, United Arab Emirates), and Northern Africa (Egypt, Morocco, Tunisia). National response threshold for inclusion was set at 25. Countries were grouped together based on regional definitions set by the United Nations. The geographic categorization includes physicians and the general public from different countries.

The geographic categorization includes physicians and the general public from more than 50 countries. Plastic surgeons were targeted through national surgery societies with more than 500 listed members, and the general public was randomly contacted via social and professional networks.

The age of the respondents ranged from 18 to 87 years, with a mean age of 40 years. The mean age of plastic surgeons was significantly higher than that of the general public (50.2 vs 30.3 years).

With 71%, 512 whites made up the largest ethnic group among all plastic surgeons, followed by 15% of Hispanics (n = 115). Similar trends were observed for the general public (Fig. 1).

Most plastic surgeons who replied to the survey live in North America (n = 332), predominantly in the United States (n = 320), followed by Latin America and the Caribbean (n = 252), primarily from Brazil (n = 142) and Colombia (n = 53). The spatial distribution of responses from the general public is also dominated in North (n = 329) and South America (n = 137). The majority of the responses were received from the United States (n = 322) and Peru (n = 124).

Given the findings from the first analysis on the relationship between variables including sex, country of residence, ethnicity, occupation, and history of rhinoplasty with respect to preferred nasal shapes and dimensions, in a second step the authors analyzed the data for interaction effects. The variables in question included country of residence, sex, age, and occupation.

RESULTS

The authors received a total of 1226 responses (response rate of 9.6%). Seven hundred twenty (612 male and 108 female) plastic surgeons and 506 (145 male and 361 female) people from the general public responded to the survey. Of all respondents, 39% were female.

The age of the respondents ranged from 18 to 87 years, with a mean age of 40 years. The mean age of plastic surgeons was significantly higher than that of the general public (50.2 vs 30.3 years).

With 71%, 512 whites made up the largest ethnic group among all plastic surgeons, followed by 15% of Hispanics (n = 115). Similar trends were observed for the general public (Fig. 1).

Most plastic surgeons who replied to the survey live in North America (n = 332), predominantly in the United States (n = 320), followed by Latin America and the Caribbean (n = 252), primarily from Brazil (n = 142) and Colombia (n = 53). The spatial distribution of responses from the general public is also dominated in North (n = 329) and South America (n = 137). The majority of the responses were received from the United States (n = 322) and Peru (n = 124).

Given the findings from the first analysis on the relationship between variables including sex, country of residence, ethnicity, occupation, and history of rhinoplasty with respect to preferred nasal shapes, in a second step the authors analyzed the dependence among these variables, using 3-way interaction effects, to see whether its interaction further clarifies the relationship.
Impact of Country of Residence, Occupation, and Sex on Perceptions of Ideal Lip Projection

Analyzing statistics regarding the impact of country of residence, occupation (general public vs surgeon), and sex on the ideal projection of the lips, significant 3-way interaction effects were found ($F_{5,1212} = 2.44$). Marked differences along this dimension occur across countries among plastic surgeons and the general public with respect to their sex ($P = 0.021$).

It appears that male respondents from the general public in the United States and Brazil prefer greater lip projections than do female respondents (Table 1). These findings elucidate significant 3-way interaction effects, which have been confirmed statistically using tests of simple main effects.

In visual terms, the difference is greatest between civilian men and women in Brazil, with females preferring less projected lips, 2 interval points below the male preference. Interestingly, this trend is opposite for surgeons. Among plastic surgeons, in both countries, females preferred greater lip projections.

Comparing men and women of both occupational categories, men and women in the United States show similar trends regarding their preference of lip projection, reflected by steep positive slopes. This, however, is not the case in Brazil, where civilian men and male surgeons seem to content in their assessment of ideal lip projection, whereas women’s preferences show significant differences depending on their occupation. The negative slope of male preferences is almost equal to zero, that is, agreement among male civilians and plastic surgeons, whereas analysis for female preferences results in a steeper positive slope, that is, major discrepancies between female aesthetic perceptions.

Interestingly, opposite trends emerge when interpreting statistics from Australia, Mexico, and Peru. Here, females among the general public preferred greater lip projection compared with male respondents, and among surgeons, the males were the ones who preferred more pronounced lips than females. The regression for the sexes results in a steep negative slope for female respondents and in a steep positive slope for the males.

Impact of Ethnicity, Occupation, and Sex on Perceptions of Ideal Chin Projection

Another significant interaction effect of the variables country of residence, occupation, and sex was observed regarding ideal chin projection ($F_{5,1212} = 2.44$). Marked differences along this dimension occur across countries among plastic surgeons and the general public with respect to their sex ($P = 0.033$).

In the United States and Brazil, surgeons, regardless of their sex, agree on the ideal chin projection. In the United States, surgeons selected a more pronounced chin projection than the general public. Among the latter, females prefer slightly larger chins than do males. Sex differences regarding this dimension were greater among men, resulting in a steeper positive slope (Fig. 2).

In Brazil, civilians display a marked difference across sexes compared with surgeons. Females from the general public preferred far greater chin projection compared with male respondents (Fig. 3 and Table 2). The visual difference is of 6 alteration points (Fig. 4).

Again, perceptions in Australia, Mexico, and Peru follow an opposite trend. Significant differences can be seen among the sexes and occupational classes. In Australia, female civilian respondents prefer greater chin projections than do males, whereas female surgeons prefer less chin projection than do males (Fig. 5).

Impact of Ethnicity, Occupation, and Sex on Perceptions of Ideal Chin Projection

In another multiple variable analysis regarding ideal chin projection, the authors introduced the variable of ethnicity. Also in this case, the relationship between sex, occupation, and ethnicity proved to be significant ($F_{6,1216} = 2.74$). Major differences among the various
TABLE 3. Tests of Between-Subjects Effects, Ethnicity, Sex, and Occupation—Ideal Chin Projection

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>P</th>
<th>Partial η²</th>
<th>Noncent. Parameter</th>
<th>Observed Power*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected model</td>
<td>284.306†</td>
<td>27</td>
<td>10.53</td>
<td>4.535</td>
<td>0 0.091</td>
<td>122.438</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>153.895</td>
<td>1</td>
<td>153.895</td>
<td>66.275</td>
<td>0</td>
<td>0.052</td>
<td>66.275</td>
<td>1</td>
</tr>
<tr>
<td>Sex</td>
<td>11.132</td>
<td>1</td>
<td>11.132</td>
<td>4.794</td>
<td>0.029</td>
<td>0.004</td>
<td>4.794</td>
<td>0.59</td>
</tr>
<tr>
<td>Occupation</td>
<td>37.427</td>
<td>1</td>
<td>37.427</td>
<td>16.118</td>
<td>0</td>
<td>0.013</td>
<td>16.118</td>
<td>0.98</td>
</tr>
<tr>
<td>Ethnic new</td>
<td>29.303</td>
<td>6</td>
<td>4.884</td>
<td>2.103</td>
<td>0.05</td>
<td>0.01</td>
<td>12.619</td>
<td>0.761</td>
</tr>
<tr>
<td>Sex × occupation</td>
<td>2.295</td>
<td>1</td>
<td>2.295</td>
<td>0.988</td>
<td>0.32</td>
<td>0.001</td>
<td>0.988</td>
<td>0.168</td>
</tr>
<tr>
<td>Sex × ethnic new</td>
<td>27.442</td>
<td>6</td>
<td>4.574</td>
<td>1.97</td>
<td>0.067</td>
<td>0.01</td>
<td>11.818</td>
<td>0.728</td>
</tr>
<tr>
<td>Occupation × ethnic new</td>
<td>13.263</td>
<td>6</td>
<td>2.211</td>
<td>0.952</td>
<td>0.457</td>
<td>0.005</td>
<td>5.712</td>
<td>0.382</td>
</tr>
<tr>
<td>Sex × occupation × ethnic new</td>
<td>38.123</td>
<td>6</td>
<td>6.354</td>
<td>2.736</td>
<td>0.012</td>
<td>0.013</td>
<td>16.418</td>
<td>0.877</td>
</tr>
<tr>
<td>Error</td>
<td>2823.613</td>
<td>1216</td>
<td>2.322</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4332</td>
<td>1244</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected total</td>
<td>3107.92</td>
<td>1243</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Computed using α = 0.05.

Copyright © 2014 Mutaz B. Habal, MD. Unauthorized reproduction of this article is prohibited.
poses another selection bias. Furthermore, because of the use of modified computer images for alteration and evaluation, these findings may not translate one-to-one to humans. However, one strength of this study is that all respondents performed their evaluations using the exact same images; thus, they were all confronted by the same conditional factors.

CONCLUSIONS

Metrics on beauty are not universally applicable, and this study aimed to clarify which beauty lies in which beholder’s eye. This study emphasized the importance of considering individual preferences and their underlying demographic, geographic, and ethnic dynamics.29–32 Its findings may aid in sensitizing the plastic surgeons’ eyes and help in further defining the common denominator between patients and surgeons with respect to aesthetic facial plastic surgery.

REFERENCES

32. Staffel JG. Basic Principles of Rhinoplasty. San Antonio, TX: University of Texas, Health Science Center at San Antonio, 1996:13

Management of a Bulky Capillary Hemangioma in the Parapharyngeal Space With Minimally Invasive Surgery

Paolo Gemmarno, MD, PhD,* Glaucio Chisci, DDS,* Guido Gabriele, MD,† Ikenna Valentine Aboh, MD, PhD,* Flavia Cescino, MD,† Filippo Giovannetti, MD, PhD,† Giorgio Iannetti, MD, PhD,† Valentino Valenti, MD, PhD†

Abstract: In this article, the authors report their management with minimally invasive surgery of a bulky capillary hemangioma in the

From the *Department of Maxillofacial Surgery, University of Siena, Siena; and †Department of Maxillofacial Surgery, Sapienza University of Rome, Rome, Italy.
Received August 6, 2013.
Accepted for publication September 17, 2013.
Address correspondence and reprint requests to Glaucio Chisci, DDS, Department of Maxillofacial Surgery, University of Siena, Policlinico “Le Scotte,” Viale M. Bracci, 16, I-53100 Siena, Italy; E-mail: goe@libero.it
The authors report no conflicts of interest.
Copyright © 2014 by Mutaz B. Habal, MD
ISSN: 1049-2275
DOI: 10.1097/SCS.000000000000461